Logo_final_pour_website_2.jpgWorkshop on TRACE metal SAMplers and sensORS

 

19th-21st sept. 2022, Pôle Numérique Brest Iroise

Plouzané, France

petit_photo_minou_revue_4.jpg

Associated publications

M.M. Grand, A. Laes-Huon, S. Fietz, J.A. Resing, H. Obata, G.W. Luther, A. Tagliabue, E. ’Pieter Achterberg, R. Middag, A. Tovar-Sanchez, Developing autonomous observing systems for micronutrient trace metals, Front. Mar. Sci. 6 (2019) 35. https://doi.org/10.3389/FMARS.2019.00035.

Bell, J., J. Betts, E. Boyle. (2002). Mitess: A moored in situ trace element serial sampler for deep‐sea moorings. Deep‐Sea Res. Part I 49: 2103–2118. doi:10.1016/S0967-0637(02)00126-7

van der Merwe, P., T. Trull, T. Goodwin, P. Jansen, A. Bowie, (2019) The autonomous clean environmental (ACE) sampler: A trace‐metal clean seawater sampler suitable for open‐ocean time‐series applications, , Limnol and oceanography methods,17 (9),doi: 10.1002/lom3.10327

Daniel, A., Laës-huon, A., Barus, C., Beaton, A. D., Blandfort, D., Guigues, N., … Muraron, D. (2020). Toward a Harmonization for Using in situ Nutrient Sensors in the Marine Environment. 6 (January), 1–22. doi: 10.3389/fmars.2019.00773

Laes-Huon, A., Cathalot, C., Legrand, J., Tanguy, V., & Sarradin, P. M. (2016). Long-Term in situ survey of reactive iron concentrations at the Emso-Azores observatory. IEEE Journal of Oceanic Engineering, 41(4), 744–752. doi: 10.1109/JOE.2016.2552779

 

Matthew W. Glasscott, Kathryn J. Vannoy, Rezvan Kazemi, Matthew D. Verber, Jeffrey E. Dick. μ-MIP: Molecularly Imprinted Polymer-Modified Microelectrodes for the Ultrasensitive Quantification of GenX (HFPO-DA) in River Water. Environmental Science & Technology Letters 2020, 7 (7) , 489-495. https://doi.org/10.1021/acs.estlett.0c00341 

Bikash Kumar Jena and C. Retna Raj. Gold Nanoelectrode Ensembles for the Simultaneous Electrochemical Detection of Ultratrace Arsenic, Mercury, and Copper. Analytical Chemistry 2008, 80 (13) , 4836-4844. https://doi.org/10.1021/ac071064w 

Rosemary Feeney and, Samuel P. Kounaves. On-Site Analysis of Arsenic in Groundwater Using a Microfabricated Gold Ultramicroelectrode Array. Analytical Chemistry 2000, 72 (10) , 2222-2228. https://doi.org/10.1021/ac991185z 

Joseph Wang,, Jianmin Lu, Dengbai Luo, Jianyan Wang, Mian Jiang, and, Baomin Tian, Khris Olsen. Renewable-Reagent Electrochemical Sensor for Monitoring Trace Metal Contaminants. Analytical Chemistry 1997, 69 (14) , 2640-2645. https://doi.org/10.1021/ac970022c 

Pawan Pathak, Jae-Hoon Hwang, Rachel H.T. Li, Kelsey L. Rodriguez, Matthew M. Rex, Woo Hyoung Lee, Hyoung J. Cho. Flexible copper-biopolymer nanocomposite sensors for trace level lead detection in water. Sensors and Actuators B: Chemical 2021, 344 , 130263. https://doi.org/10.1016/j.snb.2021.130263 

Hong Wei, Dawei Pan, Haitao Han. Electrochemical monitoring of marine nutrients: From principle to application. TrAC Trends in Analytical Chemistry 2021, 138 , 116242. https://doi.org/10.1016/j.trac.2021.116242 

Hyojin Kim, Geupil Jang, Youngdae Yoon. Specific heavy metal/metalloid sensors: current state and perspectives. Applied Microbiology and Biotechnology 2020, 104 (3) , 907-914. https://doi.org/10.1007/s00253-019-10261-y 

Zhou-Qing Xu, Xian-Jie Mao, Yuan Wang, Wei-Na Wu, Pan-Dong Mao, Xiao-Lei Zhao, Yun-Chang Fan, Hui-Jun Li. Rhodamine 6G hydrazone with coumarin unit: a novel single-molecule multianalyte (Cu 2+ and Hg 2+ ) sensor at different pH value. RSC Advances 2017, 7 (67) , 42312-42319. https://doi.org/10.1039/C7RA05424F

Online user: 2 Privacy
Loading...